Modelling the isotope enrichment of leaf water.
نویسندگان
چکیده
Farquhar and Gan have proposed a model for the spatial variation in the isotopic enrichment of H(2)(18)O across a leaf, which is specifically formulated for monocotyledoneous leaves. The model is based on the interaction between mass fluxes longitudinally within the xylem, and fluxes laterally through veinlets into the lamina mesophyll, where moisture leaves the leaf through transpiration. The lighter, more abundant, molecule H(2)(16)O escapes preferentially with the evaporating water, resulting in the enrichment of H(2)(18)O at these sites. Enriched water diffuses throughout the leaf, and it is this spatial distribution of enriched water which the model seeks to capture. In this paper we present a general formulation of the model in terms of mass flux, extending it to include variable transpiration rates across the leaf surface, as well as a tapering xylem. Solutions are developed for the general case and, since the solutions present in the form of Kummer functions, properties are established as well as methods for estimating the solutions under certain conditions relevant to the biology. The model output is compared with Gan's data collected from maize plants.
منابع مشابه
The oxygen isotope enrichment of leaf-exported assimilates – does it always reflect lamina leaf water enrichment?
The oxygen stable isotope composition of plant organic matter (OM) (particularly of wood and cellulose in the tree ring archive) is valuable in studies of plant-climate interaction, but there is a lack of information on the transfer of the isotope signal from the leaf to heterotrophic tissues. We studied the oxygen isotopic composition and its enrichment above source water of leaf water over di...
متن کاملNon-steady-state, non-uniform transpiration rate and leaf anatomy effects on the progressive stable isotope enrichment of leaf water along monocot leaves.
This study focuses on the spatial patterns of transpiration-driven water isotope enrichment (Delta(lw)) along monocot leaves. It has been suggested that these spatial patterns are the result of competing effects of advection and (back-)diffusion of water isotopes along leaf veins and in the mesophyll, but also reflect leaf geometry (e.g. leaf length, interveinal distance) and non-uniform gas-ex...
متن کاملIsotopic composition of transpiration and rates of change in leaf water isotopologue storage in response to environmental variables.
During daylight hours, the isotope composition of leaf water generally approximates steady-state leaf water isotope enrichment model predictions. However, until very recently there was little direct confirmation that isotopic steady-state (ISS) transpiration in fact exists. Using isotope ratio infrared spectroscopy (IRIS) and leaf gas exchange systems we evaluated the isotope composition of tra...
متن کاملAre leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?
During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different e...
متن کاملEnvironmental effects on oxygen isotope enrichment of leaf water in cotton leaves.
The oxygen isotope enrichment of bulk leaf water (Delta(b)) was measured in cotton (Gossypium hirsutum) leaves to test the Craig-Gordon and Farquhar-Gan models under different environmental conditions. Delta(b) increased with increasing leaf-to-air vapor pressure difference (VPd) as an overall result of the responses to the ratio of ambient to intercellular vapor pressures (e(a)/e(i)) and to st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of mathematical biology
دوره 48 6 شماره
صفحات -
تاریخ انتشار 2004